Parity of coefficients of mock theta functions

Liuquan Wang (Wuhan University)

04-Mar-2021, 10:30-11:30 (5 years ago)

Abstract: We study the parity of coefficients of classical mock theta functions. Suppose $g$ is a formal power series with integer coefficients, and let $c(g;n)$ be the coefficient of $q^n$ in its series expansion. We say that $g$ is of parity type $(a,1-a)$ if $c(g;n)$ takes even values with probability $a$ for $n\geq 0$. We show that among the 44 classical mock theta functions, 21 of them are of parity type $(1,0)$. We further conjecture that 19 mock theta functions are of parity type $(\frac{1}{2},\frac{1}{2})$ and 4 functions are of parity type $(\frac{3}{4},\frac{1}{4})$. We also give characterizations of $n$ such that $c(g;n)$ is odd for the mock theta functions of parity type $(1,0)$.

classical analysis and ODEscombinatoricsnumber theory

Audience: researchers in the topic


Special Functions and Number Theory seminar

Series comments: To obtain the link to attend the talk, please send a request to sfandnt@gmail.com a few hours in advance of the talk. If you wish to be on our mailing list, please indicate. Please visit www.sfnt.org for information about previous seminars. Thank you!

Organizers: Gaurav Bhatnagar*, Atul Dixit, Krishnan Rajkumar
*contact for this listing

Export talk to